..`'PERSAMAAN LINEAR 3 VARIABEL'`..
SISTEM PERSAMAAN LINEAR 3 VARIABEL
Dalam ilmu arsitektur, terdapat perhitungan matematika untuk mendirikan bangunan, salah satunya adalah sistem persamaan linear. Sistem persamaan linear bermanfaat untuk menentukan koordinat titik potong. Koordinat yang tepat sangat penting untuk menghasilkan bangunan yang sesuai dengan sketsa. Kali ini, kita akan membahas sistem persamaan linear tiga variabel (SPLTV).
Sistem persamaan linear tiga variabel (SPLTV) merupakan bentuk perluasan dari sistem persamaan linear dua variabel (SPLDV). Sistem persamaan linear tiga variabel adalah suatu persamaan matematika yang terdiri atas 3 persamaan linear yang masing-masing persamaan bervariabel tiga (misal x, y dan z).
Bentuk Umum
Dengan adalah bilangan real.
Keterangan:
adalah koefisien dari
adalah koefisien dari
adalah koefisien dari
adalah konstanta
adalah variabel (peubah)
Contoh Soal
1. Tentukan himpunan penyelesaian sistem persamaan linear tiga variabel berikut.2x + 5y – 3z = 3
6x + 8y -5z = 7
-3x + 3y + 4y = 15
2x + 5y – 3z = 3 … (1)
6x + 8y -5z = 7 … (2)
-3x + 3y + 4z = 15 … (3)
Eliminasikan variabel z menggunakan (1) dan (2):
2x + 5y – 3z = 3 |×5| ⇔ 10x + 25y – 15z = 15
6x + 8y -5z = 7 |×3| ⇔ 18x + 24y -15z = 21 –
-8x + y = -6 … (4)
Eliminasikan variabel z menggunakan (1) dan (3):
2x + 5y – 3z = 3 |×4| ⇔ 8x + 20y – 12z = 12
-3x + 3y + 4z = 15 |×3| ⇔-9x + 9y + 12z = 45 +
-x + 29y = 57 … (5)
Eliminasikan variabel y menggunakan (4) dan (5):
-8x + y = -6 |×29| ⇔ -232x + 29y = -174
-x + 29y = 57 |×1| ⇔ -x + 29y = 57 –
-231x = -231
x = 1
Substitusikan x ke (4):
-8x + y = -6
-8(1) + y = -6
-8 + y = -6
y = 8 – 6
y = 2
Kemudian, subsitusikan x dan y ke (1)
2x + 5y – 3z = 3
2(1) + 5(2) – 3z = 3
2 + 10 – 3z = 3
12 – 3z = 3
– 3z = 3 -12 = -9
z = -9/-3
z = 3
Jadi, himpunan penyelesaiannya adalah {(1, 2, 3)}
2. Temukan himpunan penyelesaian sistem persamaan berikut
x + y + z = -6
x + y – 2z = 3
x – 2y + z = 9
x + y + z = -6 … (1)
x + y – 2z = 3 … (2)
x – 2y + z = 9 … (3)
Tentukan persamaan x melalui (1)
x + y + z = -6 ⇔ x = -6 – y – z … (4)
Substitusikan (4) ke (2)
x + y – 2z = 3
-6 – y – z + y – 2z = 3
-6 – 3z = 3
3z = -9
z = -3
Substitusikan (4) ke (3)
x – 2y + z = 9
-6 – y – z – 2y + z = 9
-6 – 3y = 9
– 3y = 15
y = 15/(-3)
y = -5
Substitusikan z dan y ke (1)
x + y + z = -6
x – 5 – 3 = -6
x – 8 = -6
x = 8 – 6
x = 2
Jadi, himpunan penyelesaiannya adalah {(2, -5, -3)}
3. Toko alat tulis pak rudi menjual alat tulis berisi buku, spidol, dan tinta dalam 3 jenis paket sebagai berikut.
Paket A: 3 buku, 1 spidol, 2 tinta seharga Rp 17.200
Paket B: 2 buku, 2 spidol, 3 tinta seharga Rp19.700
Paket C: 1 buku, 2 spidol, 2 tinta seharga Rp14.000
Hitunglah harga 1 buah masing-masing item !
Misal:
b: harga 1 buah buku
s: harga 1 buah spidol
t: harga 1 buah tinta
Maka, model matematikanya adalah :
3b + s + 2t = 17.200 … (1)
2b + 2s + 3t = 19.700 … (2)
b + 2s + 2t = 14.000 … (3)
Eliminasikan variabel t menggunakan (1) dan (2):
3b + s + 2t = 17.200 |×3| ⇔ 9b + 3s + 6t = 51.600
2b + 2s + 3t = 19.700 |×2| ⇔ 4b + 4s + 6t = 39.400 –
5b – s = 12.200 … (4)
Eliminasikan variabel t menggunakan (1) dan (3):
3b + s + 2t = 17.200
b + 2s + 2t = 14.000 –
2b – s = 3.200
s = 2b – 3.200 … (5)
Substitusikan (5) ke (4):
5b – s = 12.200
5b – (2b – 3.200) = 12.200
5b – 2b + 3.200 = 12.200
3b = 12.200 – 3.200 = 9.000
b = 9.000 ÷ 3
b = 3.000
Substitusikan nilai b ke (5)
s = 2b – 3.200
s = 2(3.000) – 3.200
s = 6.000 – 3.200
s = 2.800
Substitusikan nilai b dan s ke (3)
b + 2s + 2t = 14.000
3.000 + 2(2.800) + 2t = 14.000
3.000 + 5.600 + 2t = 14.000
8.600 + 2t = 14.000
2t = 14.000 – 8.600 = 5.400
t = 5.400 ÷ 2
t = 2.700
Jadi, harga 1 buah buku adalah Rp3.000, 1 buah spidol adalah Rp2.800, dan 1 buah tinta adalah Rp2.700.
Sumber
https://www.kelaspintar.id/blog/edutech/sistem-persamaan-linear-tiga-variabel-dan-metode-penyelesaiannya-3129/
https://edura.id/blog/matematika/sistem-persamaan-linear-tiga-variabel/
https://blogmipa-matematika.blogspot.com/2017/10/sistem-persamaan-linear-tiga-variabel.html
https://rumuspintar.com/persamaan-linear/contoh-soal-spltv/
https://www.yuksinau.id/sistem-persamaan-linear-tiga-variabel/
Komentar
Posting Komentar