✨ SOAL CERiTA SPLTV DALAM KEHiDUPAN SEHARi-HARi ✨

 

 SOAL CERITA SPLTV DALAM KEHIDUPAN SEHARI-HARI

SPLTV adalah salah satu materi matematika yang sering ditemui dalam kehidupan sehari-hari. Materi ini sering digunakan dalam praktek jual beli. Di bawah ini terdapat beberapa contoh soal yang dikutip dari Internet.

 

Contoh Soal 1

Ibu Yanti membeli 5 kg telur, 2 kg daging, dan 1 kg udang dengan harga Rp 305.000,00. Ibu Eka membeli 3 kg telur dan 1 kg daging dengan harga Rp 131.000,00. Ibu Putu membeli 3 kg daging dan 2 kg udang dengan harga Rp 360.000,00. Jika Ibu Aniza membeli 3 kg telur, 1 kg daging, dan 2 kg udang, berapah harga yang harus ia bayar?

 

Penyelesaian:

Misal x = harga telur, y = harga daging, dan z = harga udang.

Jumlah harga belanjaan ibu Yanti Rp 305.000 sehingga diperoleh persamaan:

5x + 2y + z = 305000

Jumlah harga belanjaan ibu Eka Rp 131.000 sehingga diperoleh persamaan:

3x + y = 131000

Jumlah harga belanjaan ibu Putu Rp 360.000 sehingga diperoleh persamaan:

3y + 2z = 360000

Jumlah harga yang harus dibayar Ibu Aniza dapat ditulis dengan persamaan = 3x + y + 2z

 

Diperoleh SPLTV yakni:

5x + 2y + z = 305000 . . . . pers (1)

3x + y = 131000 . . . . pers (2)

3y + 2z = 360000 . . . . pers (3)

 

Adapun metode yang akan dipilih dalam menyelesaikan SPLTV yakni metode subtitusi.

Langkah I

Ubah persamaan 2 yakni:

3x + y = 131000

y = 131000 – 3x . . . .  pers (4)

 

Langkah II

Substitusi persamaan 4 ke persamaan 1, maka:

5x + 2y + z = 305000

5x + 2(131000 – 3x) + z = 305000

5x + 262000 – 6x + z = 305000

– x + z = 43000

z = 43000 + x . . . . persamaan 5

 

Langkah III

Substitusi persamaan 5 ke persamaan 3, maka:

3y + 2z = 360000

3y + 2(43000 + x) = 360000

3y + 86000 + 2x = 360000

2x + 3y = 274000 . . . . pers (6)

 

Langkah IV

Substitusi persamaan 4 ke persamaan 6, maka:

2x + 3y = 274000

2x + 3(131000 – 3x) = 274000

2x + 393000 – 9x = 274000

– 7x = – 119000

x = – 119000/–7

x = 17000

 

Langkah V

Substitusi nilai x ke persamaan 4 dan ke persamaan 5, maka:

y = 131000 – 3x

y = 131000 – 3(17000)

y = 80000

 

z = 43000 + x

z = 43000 + 17000

z = 60000

 

Langkah VI

Jumlah harga yang harus dibayar ibu Aniza yakni:

Ibu Dina = 3x + y + 2z

Ibu Dina = 3(17000) + 80000 + 2(60000)

Ibu Dina = 51000 + 80000 + 120000

Ibu Dina = 251000

 

Jadi, harga yang harus Ibu Aniza bayar adalah sebesar Rp 251.000,00

 

 

 

Contoh Soal 2

Pada hari Minggu Wayan, Candra, Agus dan Akbar membeli perlengkapan sekolah di toko buku “Subur”. Wayan membeli 4 buku, 2 bolpoin, dan 3 pensil dengan harga Rp26.000,00. Candra membeli 3 buku, 3 bolpoin, dan 1 pensil dengan harga Rp21.500,00. Agus membeli 3 buku, dan 1 pensil dengan harga Rp12.500,00. Jika Akbar membeli 1 buku, 2 bolpoin dan 2 pensil, berapakah harga yang harus ia bayar?

 

Penyelesaian:

Misalkan a = buku, b = bolpoin, dan c = pensil

 

Persamaan matematis untuk:

Wayan => 4a + 2b + 3c = 26000

Candra => 3a + 3b + c = 21500

Agus => 3a + c = 12500

Akbar => a + 2b + 2c = ?

 

Diperoleh SPLTV yakni:

4a + 2b + 3c = 26000 . . . . pers (1)

3a + 3b + c = 21500 . . . . pers (2)

3a + c = 12500 . . . . pers (3)

 

Adapun metode yang dipilih dalam menyelesaikan SPLTV ini yakni dengan menggunakan metode eliminiasi.

 

Langkah I

Eliminasi variabel b pada persamaan 1 dan 2 yakni:

4a + 2b + 3c = 26000  x3

3a + 3b + c = 21500    x2

 

12a + 6b + 9c = 78000

  6a + 6b + 2c = 43000

-----------------------------   -

  6a +  0  + 7c = 35000

=> 6a + 7c = 35000 . . . pers (4)

 

Langkah II

Eliminiasi variabel c pada persamaan 3 dan 4, yakni:

3a + c = 12500    x7

6a + 7c = 35000  x1

 

21a + 7c = 87500

  6a + 7c = 35000

-----------------------  -

15a          = 52500

a = 3500

 

Langkah III

Substitusi nilai a ke persamaan 4, maka:

6a + 7c = 35000

6(3500) + 7c = 35000

21000 + 7c = 35000

7c = 14000

c = 2000

 

Langkah IV

Substitusi nilai a dan c ke persamaan 2, maka:

3a + 3b + c = 21500

3(3500) + 3b + 2000 = 21500

10500 + 3b + 2000 = 21500

12500 + 3b = 21500

3b = 9000

b = 3000

 

Langkah V

Untuk menentukan harga yang harus Akbar bayar dapat dilakukan dengan memasukan nilai a, b dan c, yakni:

Harga = a + 2b + 2c

Harga = 3500 + 2(3000) + 2(2000)

Harga = 3500 + 6000 + 4000

Harga = 13500

Jadi harga yang harus Akbar bayar adalah sebesar Rp 13.500,00

 

 

 

Contoh Soal 3

Diketahui sebuah bilangan tiga angka. Jumlah angka-angka tersebut 11. Dua kali angka pertama ditambah angka kedua sama dengan angka ketiga. Angka pertama ditambah angka kedua dikurangi angka ketiga sama dengan – 1. Tentukan ketiga bilangan tersebut.

 

Penyelesaian:

Misalkan: x = bilangan pertama, y = bilangan kedua, z = bilangan ketiga

 

Persamaan matematis:

a + b + c = 11

2a + b = c => 2a + b – c = 0

a + b – c = – 1

 

Diperoleh SPLTV yakni:

a + b + c = 11 . . . . pers (1)

2a + b – c = 0 . . . . pers (2)

a + b – c = – 1 . . . . pers (3)

 

Langkah I

Eliminasi c dengan menggunakan persamaan 1 dan 2 maka:

a + b + c = 11

2a + b – c = 0

----------------- +

3a + 2b = 11 . . . . . pers (4)

 

Langkah II

Eliminasi b dan c dengan menggunakan persamaan 2 dan 3, maka:

2a + b – c = 0

a + b – c = – 1

------------------  -

a = 1

 

Langkah III

Subtitusi nilai a ke persamaan 4, maka:

3a + 2b = 11

3(1) + 2b = 11

3 + 2b = 11

2b = 8

b = 4

 

Langkah IV

Subtitusi nilai a dan b ke persamaan 1, 2 atau 3, maka:

a + b + c = 11

1 + 4 + c = 11

5 + c = 11

c = 6

 

Jadi ketiga bilangan tersebut secara berurutan adalah 1, 4 dan 6.

 

 

 Contoh soal 4

Pada sebuah toko buku kia membeli  4 buku, 2 pulpen, 3 pensil dengan harga Rp. 26.000,00. Dina membeli 3 buku, 3 pulpen, 1 pensil dengan harga Rp.21.000,00. Dika membeli 3 buku dan 1 pensil dengan harga Rp.12.000,00. Jika didin membeli  2 pulpen dan 3 pensil , maka tentukan biaya yang dikeluarkan oleh didin. Pembahasan :
misalkan: 

Buku  = x
Pulpen  = y 
Pensil  = z

Sistem persamaan linear :
1) 4x + 2y + 3z = 26.000
2) 3x + 3y + z = 21.000
3) 3x + z = 12.000
Ditanya : 2y + 3z = ...?

Persamaan 2 dan 3 
3x+3y+z = 26.000
3x + z     = 12.000 
3y          = 3.000 (persamaan 4)

Persamaan 1 dan 2
4x + 6.000  + 3z   = 26.000| 4x + 3z = 20.000 |x3| 12x + 9z = 60.000
3x  + 9.000 +  z = 21.000   | 3x + z = 12.000   |x4|12x  + 4z = 48.000
                                                                5z =  12.000 (persamaan 5)
        Z = 2.400

jadi untuk 2y + 3z adalah 
= 2 . (3.000) + 3 . (2.400)
= 6.000 + 7.200
= Rp.13.200,00
 
Office, Material, Teacher, Rule
 
 

Contoh Soal 5

jumlah uang  dani, dini, dudi, Rp.150.000,00 jumlah uang dani dan dini Rp.30.000,00 kurang dari dua kali uang dudi. Jumlah uang dani dan dudi Rp.30.000,00 lebih dari dua kali uang dini 

jadi berapa uang dani, dini, dan dudi ? 

pembahasan :
x = dani
y = dini
z = dudi
1) x + y + z = 150.000 . . . (1)
2) x + y = 2z - 30.000
x + y + 2z = -30.000 . . . (2)
3) x + z = 2y + 30.000
x - 2y + z = 30.000 . . . (3)

jawab :
 x + y + z = 150.000
x – 2y + z = 30.000 -
    3y = 120.000
      y = 40.000

x + y + z = 150.000
x + y – 2z = 30.000 
     3z = 120.000
      z  = 40.000

x + y + z = 150.000
x + 40.000 + 40.000 = 150.000
x = 150.000 – 80.000 
x = 60.000,00

jadi uang dani= Rp.60.000,00 dini=Rp. 40.000,00 dudi=Rp.40.000,00

 Banknotes, Bankroll, Bill, Money, Notes

 SUMBER

http://andialphianasorayaramadanti.blogspot.com/2017/01/soal-cerita-sistem-persamaan-tiga.html

https://mafia.mafiaol.com/2020/10/contoh-soal-cerita-persamaan-linear-tiga-variabel-dan-penyelesaiannya.html

Komentar

Postingan populer dari blog ini

SAYA SENANG SEKOLAH DI SMA NEGERI 63 JAKARTA

..`'PERSAMAAN LINEAR 3 VARIABEL'`..