()SUDUT-SUDUT() BERELASI |Pt. 2|
Di part sebelumnya, kita sudah membahas pengertian sudut berelasi. Nah, kali ini kita akan membahas perbandingan sudut-sudut berelasi di kuadran I, II, III, dan IV.
Sudut Berelasi di Kuadran I
Untuk α = sudut lancip, maka (90° − α) merupakan sudut-sudut kuadran I. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :
sin (90° − α) = cos α
cos (90° − α) = sin α
tan (90° − α) = cot α
Sudut Berelasi di Kuadran II
Untuk α = sudut lancip, maka (90° + α) dan (180° − α) merupakan sudut-sudut kuadran II. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :
sin (90° + α) = cos α
cos (90° + α) = -sin α
tan (90° + α) = -cot α
sin (180° − α) = sin α
cos (180° − α) = -cos α
tan (180° − α) = -tan α
Sudut Berelasi Kuadran III
Untuk α = sudut lancip, maka (180° + α) dan (270° − α) merupakan sudut kuadran III. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :
sin (180° + α) = -sin α
cos (180° + α) = -cos α
tan (180° + α) = tan α
sin (270° − α) = -cos α
cos (270° − α) = -sin α
tan (270° − α) = cot α
Sudut Berelasi Kuadran IV
Untuk α = sudut lancip, maka (270° + α) dan (360° − α) merupakan sudut kuadran IV. Dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :
sin (270° + α) = -cos α
cos (270° + α) = sin α
tan (270° + α) = -cot α
sin (360° − α) = -sin α
cos (360° − α) = cos α
tan (360° − α) = -tan α
Ada 2 hal yang harus diperhatikan, yaitu sudut relasi yang dipakai dan tanda untuk tiap kuadran.
Untuk relasi (90° ± α) atau (270° ± α), maka :
sin → cos
cos → sin
tan → cot
Sedangkan untuk relasi (180° ± α) atau (360° ± α), maka :
sin = sin
cos = cos
tan = tan
Tabel Sudut Berelasi
Berikut adalah table sudut berelasi sin, cos, tan, cosec, sec, dan cotan di kuadran I, II, III, dan IV.
Kuadran I | Kuadran II | Kuadran III | Kuadran IV | |
Sin α | Cos (90° – α) | Sin (180° – α) | –Sin (180° + α) | –Sin (360° – α) |
Cos α | Sin (90° – α) | –Cos (180° – α) | –Cos (180° + α) | Cos (360° – α) |
Tan α | Cotan (90° – α) | –Tan (180° – α) | Tan (180° + α) | –Tan (360° – α) |
Cosec α | Sec (90° – α) | Cosec (180° – α) | –Cosec (180° + α) | –Cosec (360° – α) |
Sec α | Cosec (90° – α) | –Sec (180° – α) | –Sec (180° + α) | Sec (360° – α) |
Cotan α | Cotan (90° – α) | –Cotan (180° – α) | Cotan (180° + α) | –Cotan (360° – α) |
Tanda masing-masing kuadran
Kuadran I (0 − 90°) = semua positif
Kuadran II (90° − 180°) = sinus positif, lainnya negatif
Kuadran III (180° − 270°) = tangen positif, lainnya negatif
Kuadran IV (270° − 360°) = cosinus positif, lainnya negatif
Contoh Soal
Contoh Soal 1
Untuk perbandingan trigonometri berikut, nyatakanlah dalam perbandingan trigonometri sudut komplemennya
sin 20°
tan 40°
cos 53°
Jawab :
sin 20° = sin (90° − 70°)
= cos 70°
tan 40° = tan (90° − 50°)
= cot 50°
cos 53° = cos (90° − 37°)
= sin 37°
Jika diperhatikan pada sin yang berubah menjadi cos, kemudian tan berubah jadi cot sedangkan cos berubah menjadi sin karena relasi yang dipaka adalah (90° − α) dan ketiga perbandingan trigonometri bernilai positif, karena sudut 20°, 40° dan 53° berada di kuadran I.
Contoh Soal 2
Nyatakan tiap perbandingan trigonometri berikut di dalam sudut 37° !
tan 143°
sin 233°
cos 323°
Jawab :
Sudut 143° adapada kuadran II, hingga tan 143° memiliki nilai negatif.
tan 143° = tan (180° − 37°)
= -tan 37°
Sudut 233° ada pada kuadran III, sehingga sinus memiliki nilai negatif.
sin 233° = sin (270° − 37°)
= -cos 37°
Perhatikan sin berubah menjadi cos dikarenakan relasi yang dipakai (270° − α)
Sudut 323° ada pada kuadran IV, hingga cosinus memiliki nilai positif.
cos 323° = cos (360° − 37°)
= cos 37°
Contoh Soal 3
Tanpa memakai kalkulator, tentukan nilai dari sin100∘−cos190∘cos350∘−sin260∘
Jawab :
sin 100° = sin (90° + 10°)= cos 10°
cos 190° = cos (180° + 10°)
= -cos 10°
cos 350° = cos (360° − 10°)
= cos 10°
sin 260° = sin (270° − 10°)
= -cos 10°
Hingga :
sin100∘−cos190∘cos350∘−sin260∘=cos10∘−(−cos10∘)cos10∘−(−cos10∘)=2cos10∘2cos10∘=1
Komentar
Posting Komentar